Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 877: 162843, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-36924965

RESUMO

Nowadays, applying anammox to treat high nitrogenous side-stream wastewater has taken a step forward. However, the partial nitritation process is sensitive to the ammonium concentration and the nitrogen loading rate, which significantly influences the nitrogen removal performance. This study investigated the performance of a novel nitritation pilot-scale reactor which was divided into four chambers. The nitrite accumulation efficiency reached more than 90 % in the rural wastewater treatment process. As the reactor was divided into four chambers, the comprehensive statistical results showed that the concentration of free ammonium in the front chambers had been effectively improved. The proportion of free ammonium concentration (>0.1 mg NH3·L-1), which could inhibit the activity of nitrite oxidizing bacteria, in first chamber (PN1) was 2 times higher than in the last chamber (PN4). Meanwhile, Nitrosomonas, responsible for ammonium oxidation to nitrite, was highly enriched in the first two chambers even though the dissolved oxygen was maintained at 1.5 ± 0.3 mg·L-1. Compare to conventional reactor, the resistance of the novel reactor to volumetric shock loading has been enhanced. Even though the ammonium loading rate fluctuated greatly, the effluent was still stable and could meet the demand following the anammox process. This study demonstrated that the reactor with multi-chambers could effectively improve the nitrite accumulation efficiency in the partial nitritation process and thus provide a new perspective on the partial nitritation process in a single reactor and further promote the anammox performance in the wastewater treatment process.

2.
Sci Total Environ ; 868: 161659, 2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-36657689

RESUMO

The rapid start-up and stable operation of one-stage (Partial nitrification/anammox) PN/A process for low-ammonium wastewater are difficult to be achieved, and many carriers are designed to solve this problem. Here, a composite carrier was developed, in which sepiolite and non-woven fabrics were assembled in polypropylene spherical shells. At the start-up phase, PA reactor using the composite carriers reached a higher nitrogen removal rate of 134.50 ± 19.60 mg·N·L-1d-1, in contrast to that of 48.85 ± 19.64 mg·N·L-1d-1 in the PB reactor without sepiolite carriers. When the final influent ammonium concentration of PN/A process is 100 mg/L, the total nitrogen removal efficiency can reach 72 ± 0.03 %. High biomass immobilization ability of composite carrier was evidenced by the greater adsorption trend between sludge and sepiolite than that between sludge and non-woven fabrics, where hydrophobic interaction and Van der Waals interaction played a major role. Extracellular protein (PN) content and the ratio of PN and extracellular polysaccharide of samples in PA were significantly higher than those in PB, verifying higher biofilm formation ability on the composite carrier. The composite carrier also increased the abundance of dominant bacteria in PN/A process, especially AOB, the relative abundance of which reached 46.11 %. And it increased the abundance of essential functional genes for nitrogen conversion as their perfect acid neutralizing effects. This study is of great significance in improving the start-up speed and stable operation of this process.


Assuntos
Compostos de Amônio , Nitrificação , Esgotos , Desnitrificação , Aderência Bacteriana , Nitrogênio , Oxidação Anaeróbia da Amônia , Oxirredução , Reatores Biológicos
3.
Front Bioeng Biotechnol ; 10: 851565, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35387301

RESUMO

Practical application of the partial nitritation-anaerobic ammonium oxidation (anammox) process has attracted increasing attention because of its low operational costs. However, the nitritation process, as a promising way to supply nitrite for anammox, is sensitive to the variations in substrate concentration and dissolved oxygen (DO) concentration. Therefore, a stable supply of nitrite becomes a real bottleneck in partial nitritation-anammox process, limiting their potential for application in mainstream wastewater treatment. In this study, five 18-L sequencing batch reactors were operated in parallel at room temperature (22°C ± 4°C) to explore the nitritation performance with different carrier materials, including sepiolite-nonwoven carrier (R1), zeolite-nonwoven carrier (R2), brucite-nonwoven carrier (R3), polyurethane carrier (R4), and nonwoven carrier (R5). The ammonia oxidation rate (AOR) in R1 reached the highest level of 0.174 g-N L-1 d-1 in phase II, which was 1.4-fold higher than the control reactor (R4). To guarantee a stable supply of nitrite for anammox process, the nitrite accumulation efficiency (NAE) was always higher than 77%, even though the free ammonia (FA) decreases to 0.08 mg-N/L, and the pH decreases to 6.8 ± 0.3. In phase V, the AOR in R1 reached 0.206 g-N L-1 d-1 after the DO content increase from 0.7 ± 0.3 mg/L to 1.7 ± 0.3 mg/L. The NAE in R1 was consistently higher than 68.6%, which was much higher than the other reactor systems (R2: 43.8%, R3: 46.6%, R4: 23.7%, R5: 22.7%). Analysis of 16S rRNA gene sequencing revealed that the relative abundance of Nitrobacter and Nitrospira in R1 was significantly lower than other reactors, indicating that the sepiolite carrier plays an important role in the inhibition of nitrite-oxidizing bacteria. These results indicate that the sepiolite nonwoven composite carrier can effectively improve the nitritation process, which is highly beneficial for the application of partial nitritation-anammox for mainstream wastewater treatment.

4.
Huan Jing Ke Xue ; 33(8): 2728-34, 2012 Aug.
Artigo em Chinês | MEDLINE | ID: mdl-23213897

RESUMO

The pretreatment of bio-treated effluent of dye wastewater by UV/H2O2 process was studied. The influencing factors, such as H2O2 dosage, reaction time and pH values were evaluated for the removal efficiency of UV254, ADMI7.6, DOC and DOC of dye wastewater by UV/H2O2 process. The experimental results showed that,the optimal conditions determined were as follows: initial pH 7.4-8.1, H2O2 dosage 4.5 mmol x L(-1) and UV irradiation time of 50 min. Under the optimal conditions, UV254, ADMI7.6, DOC and COD removal rate could reach 77%, 94%, 40% and 69%. Removal effects of four different DOM fractions, hydrophobic acids, non-acid hydrophobics, tasnsphilics and hydrophilics separated by XAD-8 and XAD-4 resins. The experimental results show that: hydrophobic material was the main substance causing color, when it was characterized by ADMI7.6, the proportion could reach 92%, of which 53% was non-acid hydrophobics. It indicated that removal efficiencies of tasnsphilics, hydrophobic acids and non-acid hydrophobics were high through UV/H2O2, process, while hydrophilics' efficiencies were lower. The experimental results showed that organic molecules with molecular weight over 10,000 contributed greatly to UV254, ADMI7.6 and DOC removal rate.


Assuntos
Corantes/isolamento & purificação , Peróxido de Hidrogênio/química , Raios Ultravioleta , Eliminação de Resíduos Líquidos/métodos , Águas Residuárias/química , Reatores Biológicos , Corantes/química , Compostos Orgânicos/química , Compostos Orgânicos/isolamento & purificação , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...